

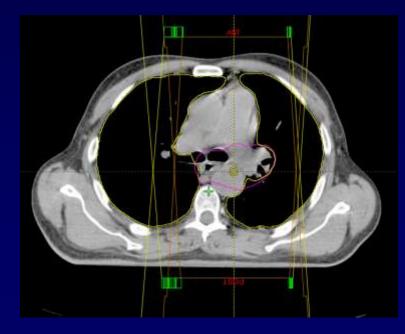
Ce n'est pas toujours une récidive: imagerie des traitements non chirurgicaux du cancer bronchique Imagerie après radiothérapie

Benoît Ghaye, MD PhD Department of Radiology Cliniques Universitaires St Luc Catholic University of Louvain B -1200 Brussels Belgium benoit.ghaye@uclouvain.be Toulouse Cli

Toulouse Club Thorax Septembre 2019

Ultimate goal of radiation therapy

<text>

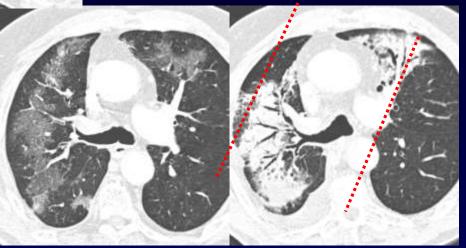

... to achieve tumor control without complication

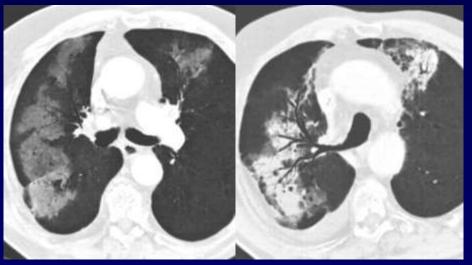
Radiation therapy How does it work

• 2D-conventional RT

- Two parallel beams with opposed orientations
- 2 Gy per field combination per day
- (≤) 60 Gy total
- Limited beam orientation \rightarrow large areas of normal tissue irradiated

Park RadioGraphics 2000;20:83


Reference point : day of completion of radiation therapy


Early phase : transient radiation pneumonitis

 appears between 1 – 3 months
 lasts up to 6 months
 dyspnea, cough, low-grade fever, discomfort
 steroids

• Late phase : chronic radiation fibrosis unresolved radiation pneumonitis 6 - 12 months (up to 24 months) stable after 2 years mostly asymptomatic progressive dyspnea, dry cough, cor pulmonale Davis AJR 1992;159:1157 Park RadioGraphics 2000;20:83

Early phase

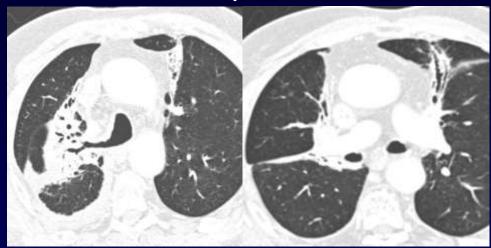
3 months

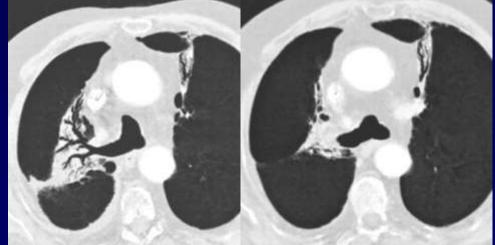
2 months

Pathology : acute exsudative phase followed by organizing phase with interstitial infiltration by mononuclear and other inflammatory cells

- Lung injury (diffuse / patchy / nodular)
 - Ground-glass
 - Consolidation

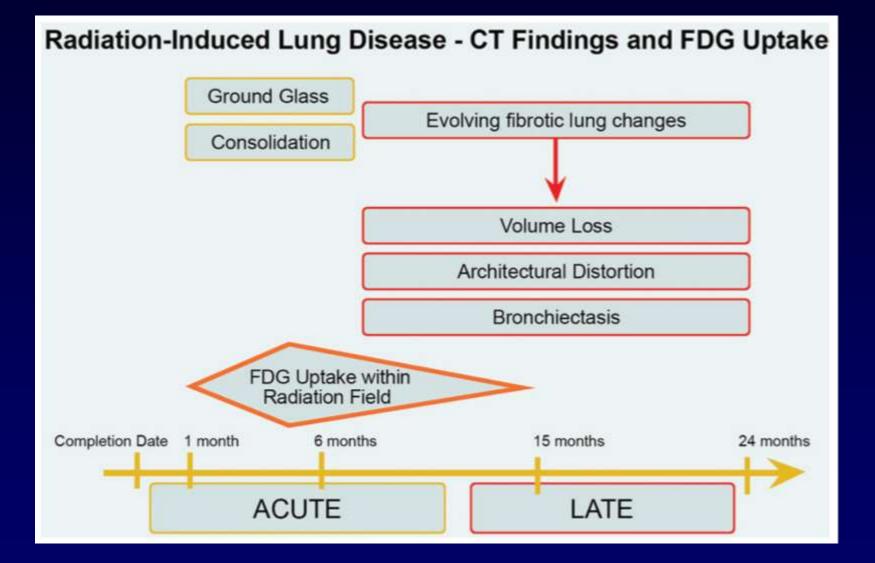
Generally confined to field of irradiation Do not conform to anatomic boundaries


- Pleural effusion
- Atelectasis
 - Usually regresses over 6 months
 No sequellae

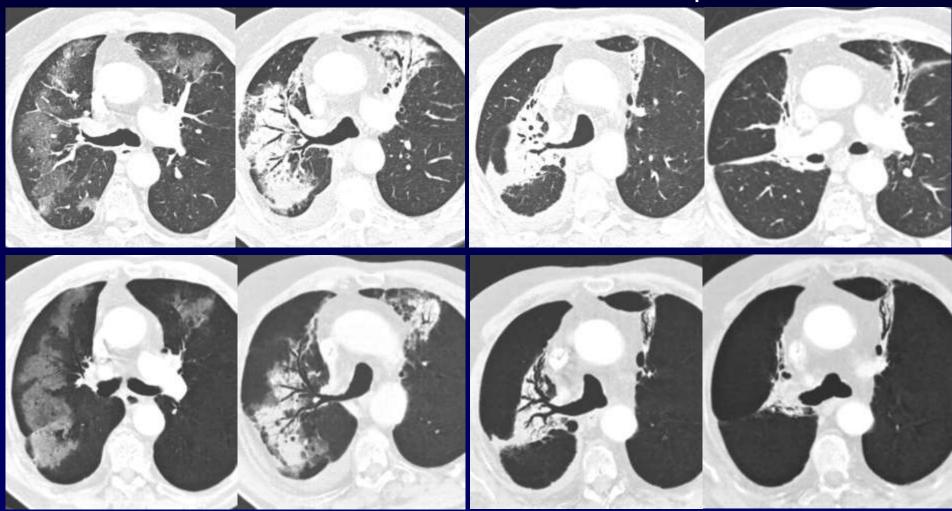

Choi RadioGraphics 2004;24:985

Late phase

- Lung volume loss (mediastinal shift) Architectural distortion
- Consolidation
 Well-defined
- Shrinkage Sharper demarcation Shape/location may change →12 mths
- Air bronchogram
 Traction bronchectasis
- May stabilize Evolve up to 24 mths
- (Small pleural effusion or thickening)


Park RadioGraphics 2000;20:83 Choi RadioGraphics 2004;24:985

8 months


10 months

Benveniste RadioGraphics 2019;39:344

Early phase

Late phase

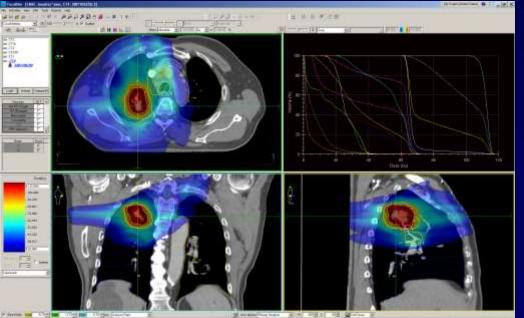
2 months

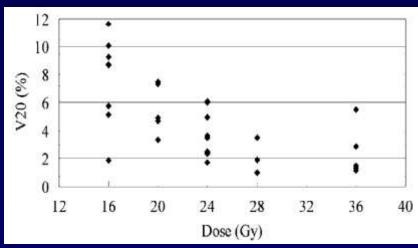
3 months

8 months

10 months

• Technique


- Conventional vs. conformational
- Portals and beam arrangement
- Dose : total (rarely < 20, commonly 20-40, almost always > 40 Gy) fractionation and dose rate
- Irradiated volume (V_{20Gy})
- Physical characteristics of irradiation
- Treatment
 - Prior irradiation
 - Chemo, Immunotherapy
 - Steroids (rebound)
- Tumor
 - Tumor location
- Patient
 - Age
 - Lung performance status
 - Preexisting lung disease


• Technique

- Conventional vs. conformational
- Portals and beam arrangement
- Dose : total (rarely < 20, commonly 20-40, almost always > 40 Gy) fractionation and dose rate
- Irradiated volume (V_{20Gy})
- Physical characteristics of irradiation
- Treatment
 - Prior irradiation
 - Chemo, Immunotherapy
 - Steroids (rebound)
- Tumor
 - Tumor location
- Patient
 - Age
 - Lung performance status
 - Preexisting lung disease

• Technique

- Conventional vs. conformational
- Portals and beam arrangement
- Dose : total (rarely < 20, commonly 20-40, almost always > 40 Gy) fractionation and dose rate
- Irradiated volume (V_{20Gy})
- Physical characteristics of irradiation

Aoki Radiology 2004;230:101

Park RadioGraphics 2000;20:83

Preexisting lung disease

• Technique

- Conventional vs. conformational
- Portals and beam arrangement
- Dose : total (rarely < 20, commonly 20-40, almost always > 40 Gy) fractionation and dose rate
- Irradiated volume (V_{20Gy})
- Physical characteristics of irradiation
- Treatment
 - Prior irradiation
 - Chemo, immunotherapy
 - Steroids (rebound)
- Tumor
 - Tumor location
- Patient
 - Age
 - Lung performance status
 - Preexisting lung disease

Radiation therapy New techniques

3D-CRT

BOOST

PROTON

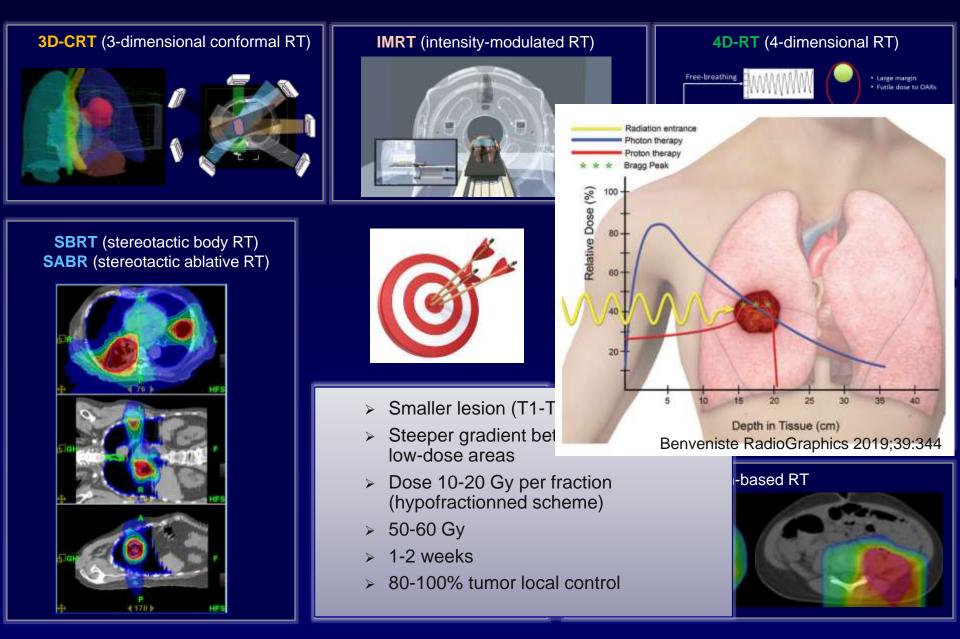
4D-RT

SABR

Radiation therapy New techniques

3D-CRT

BOOST


PROTON

4D-RT

SABR

Radiation therapy New techniques

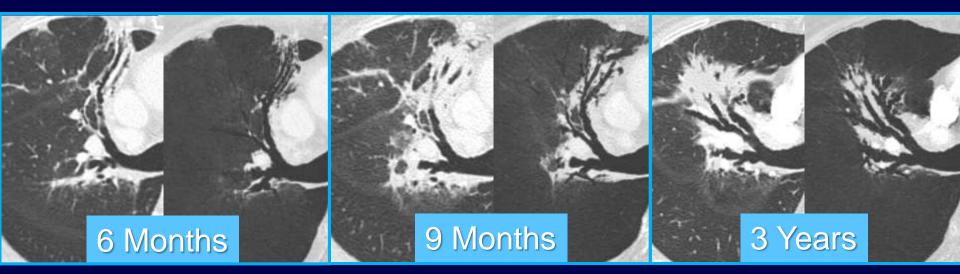
- Lung volume loss (mediastinal shift) Architectural distortion
- Consolidation
 Well-defined (modified conventional, scarlike, masslike patterns)
 Shape/location may change →12 mths
- Shrinkage
 Sharper demarcation
- Air bronchogram
 Traction bronchectasis
- May stabilize
 Evolve up to 24 mths
- (Small pleural effusion or thickening)

Koenig AJR 2002;178:1383-88 Larici RadioGraphics 2011;31:771-89

 Lung volume loss (mediastinal shift) Architectural distortion

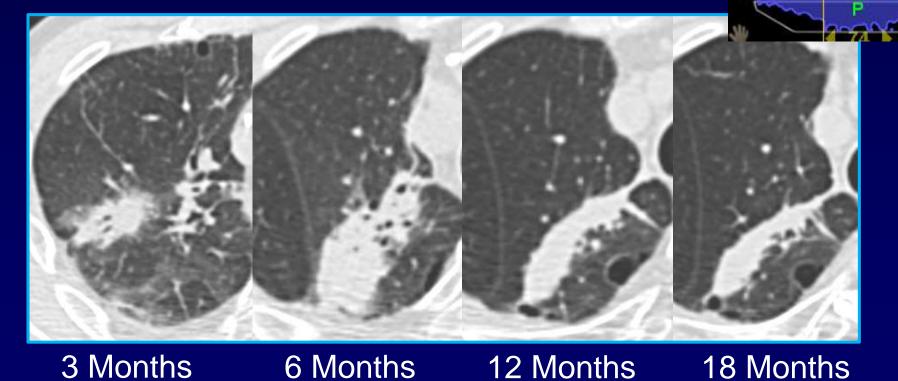
Less extensive

Consolidation
 Well-defined (modified conventional, scarlike, masslike patterns)
 Shape/location may change →12 mtbs >24 mths


- Shrinkage
 Sharper demarcation
- Air bronchogram
 Traction bronchectasis
- May stabilize
 Evolve up to 24 mths
- (Small pleural effusion or thickening)

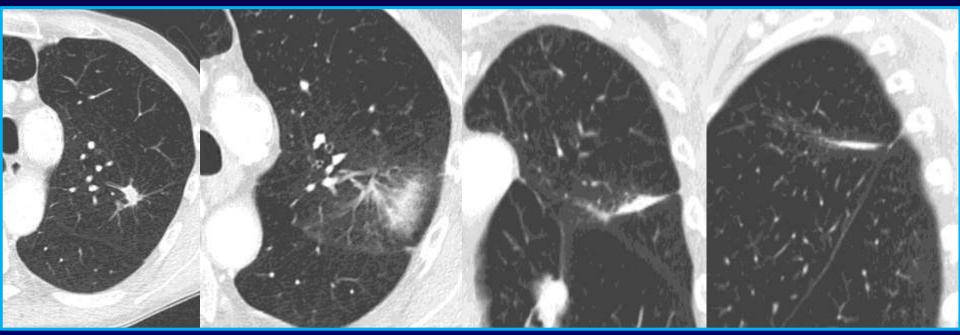
Koenig AJR 2002;178:1383-88 Larici RadioGraphics 2011;31:771-89

 Lung volume loss (mediastinal shift) Architectural distortion


Less extensive

Consolidation
 Well-defined (modified conventional, scarlike, masslike patterns)
 Shape/location may change →12 mtbs >24 mths

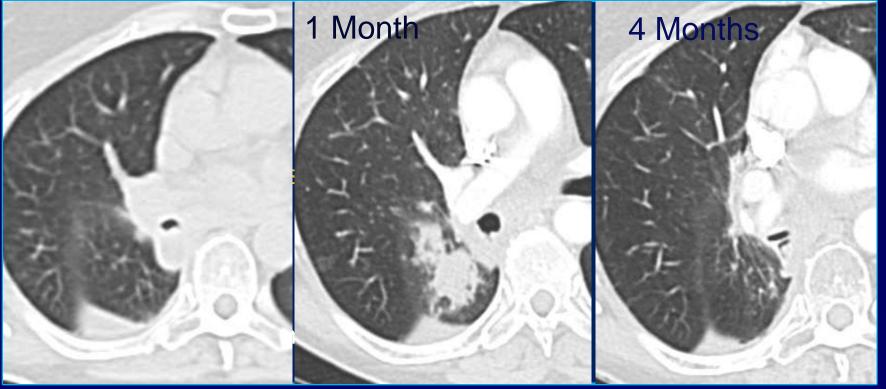
Koenig AJR 2002;178:1383-88 Larici RadioGraphics 2011;31:771-89


- Lung volume loss (mediastinal shift) Architectural distortion
- Consolidation
 Well-defined (modified conventional, <u>scarlike</u>, masslike p Shape/location may change →<u>12-mths</u> >24 mths

 Lung volume loss (mediastinal shift) Architectural distortion

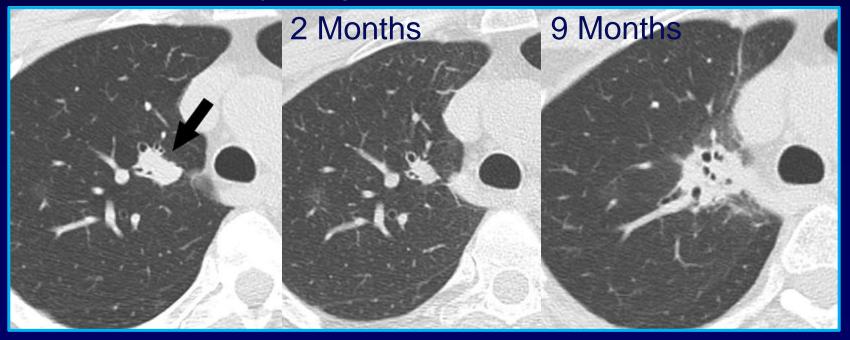
• Consolidation

Well-defined (modified conventional, <u>scarlike</u>, masslike patterns) Shape/location may change $\rightarrow 12$ mths >24 mths



 Lung volume loss (mediastinal shift) Architectural distortion

May simulate tumor


Consolidation
 Well-defined (modified conventional, scarlike, <u>masslike patterns</u>)
 Shape/location may change →12-mtbs >24 mths

 Lung volume loss (mediastinal shift) Architectural distortion

May simulate tumor

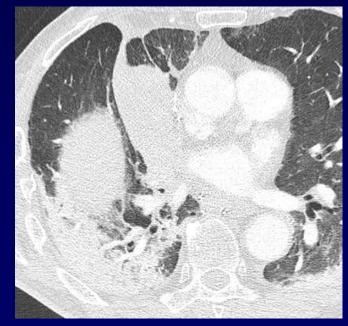
Consolidation
 Well-defined (modified conventional, scarlike, <u>masslike patterns</u>)
 Shape/location may change →12 mtbs >24 mths

Dahele J Thorac Oncol 2011;6:1221-8 Ronden Int J Radiat Oncol Biol Phys 2018;100:115-21

Infections

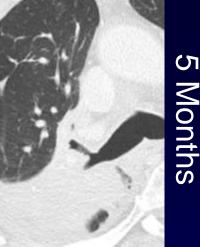
Locally recurrent tumor

Radiation-induced tumor

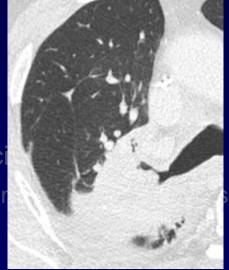

Drug-induced lung disease

Infections

Abrupt onset

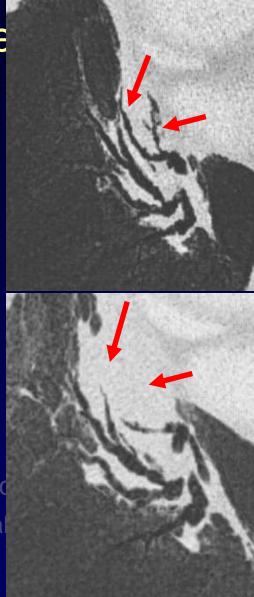

 Pulmonary opacities appearing before completion of RT outside radiation portals

- Respect anatomic boudaries
- Diffuse
- Bilateral
- Centrilobular, tree-in-bud opacities
- Cavitation
- Filling-in of bronchi
- Locally recurrent tumor
- Radiation-induced tumor

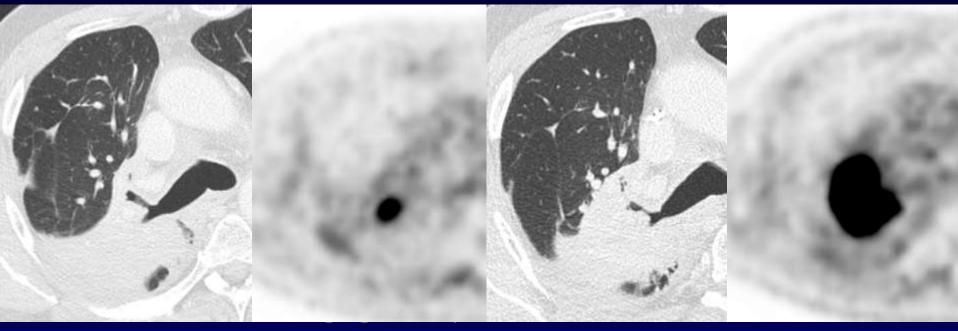

Choi RadioGraphics 2004;24:985

- Infections
- Locally recurrent tumor
 - Usually within 2 years
 - Increase in size of radiation fibrosis area
 - Homogeneous opacification
 - Absence of air bronchogram
 - Convex border of irradiated lung
 - Filling-in of bronchi²
 - Others: LK, enlarging LN or pleural effusion
 - PET/CT >> CT : sensitivity 100% vs. 71%, speci
 - No PET before 3-6 months (PET uptake occasion)
 - Pathological proof required
- Radiation-induced tumor

9


Months

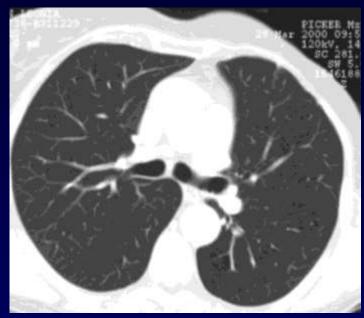
¹Kim RadioGraphics 1992;12:269 ¹Bury ERJ 1999;14:1376 ²Libshitz Radiology 1999;210:25 Choi RadioGraphics 2004;24:985

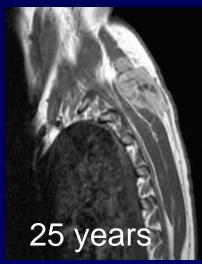

- Infections
- Locally recurrent tumor
 - Usually within 2 years
 - Increase in size of radiation fibrosis area
 - Homogeneous opacification
 - Absence of air bronchogram
 - Convex border of irradiated lung
 - Filling-in of bronchi²
 - Others: LK, enlarging LN or pleural effusion
 - PET/CT >> CT : sensitivity 100% vs. 71%, specific
 - No PET before 3-6 months (PET uptake occasionnal
 - Pathological proof required

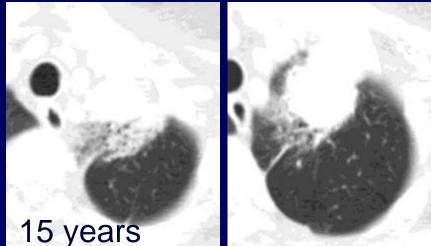
Radiation-induced tumor

¹Kim RadioGraphics 1992;12:269 ¹Bury ERJ 1999;14:1376 ²Libshitz Radiology 1999;210:25 Choi RadioGraphics 2004;24:985

Radiation-induced lung disease Differential diagnosis 5 Months 9 Months

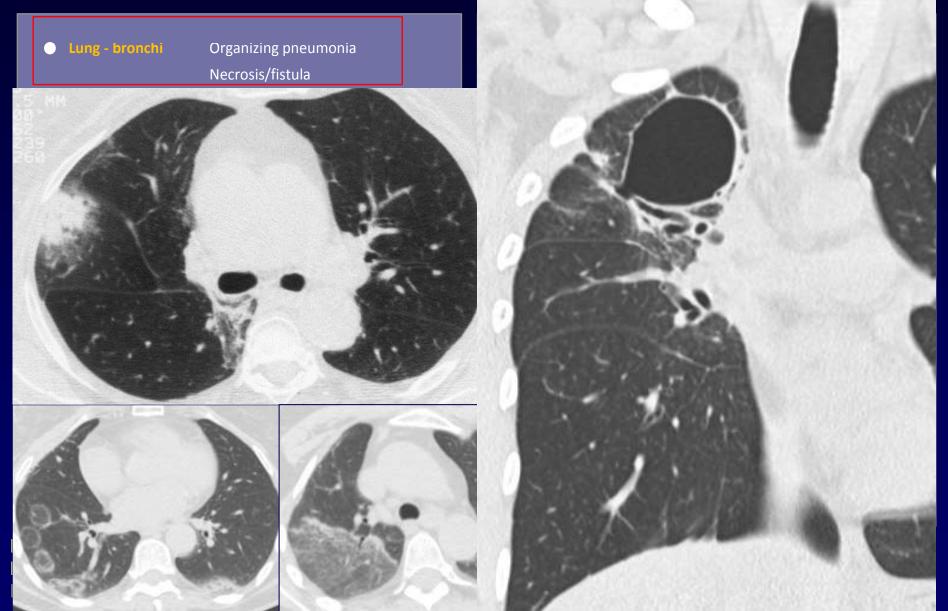



- PET/CT >> CT : sensitivity 100% vs. 71%, specificity 92 vs. 95%¹
- No PET before 3-6 months (PET uptake occasionnally up to 24 mths)
- Pathological proof required


Radiation-induced tumor

¹Kim RadioGraphics 1992;12:269 ¹Bury ERJ 1999;14:1376 ²Libshitz Radiology 1999;210:25 Choi RadioGraphics 2004;24:985

- Infections
- Locally recurrent tumor
- Radiation-induced tumor
 - Risk: 2.4/100 patients-years
 Increases with time (median 9.6 years)
 - Lung, œsophagus, stomach
 - Lung: inside or edge of irradiated area



Radiation-induced thoracic disease Unusual findings

Lung - bronchi	Organizing pneumonia Necrosis/fistula Bronchial thickening/stenosis Eosinophilic pneumonia	• Vessels	Stenosis/occlusion > pseudoaneurysm Dissection Calcifications
• Pleura	Pneumothorax Thickening Mesothelioma	• Heart	Coronary artery disease Pericarditis Cardiomyopathy Valvular disease Conduction abnormalities
Esophagus	Dysmotility Ulceration Stricture/perforation/fistula	• Liver	Focal hepatitis Atrophic liver changes
Mediastinum	Thymic cyst Fibrosing mediastinitis Nerve injury	• Chest wall	Breast carcinoma Sarcoma/osteochondroma Oedema, calcifications, Skin thickening Osteoradionecrosis
Lymph nodes	Calcifications		Fracture

Mesurolle RadioGraphics 2000;20:67 Benveniste RadioGraphics 2019;39:344 Febbo RadioGraphics 2018;38;1312

Radiation-induced thoracic disease Unusual findings

Radiation-induced thoracic disease Unusual findings

Lung - bronchi

Organizing pneumonia Necrosis/fistula Bronchial thickening/ste Eosinophilic pneumonia

Pleura

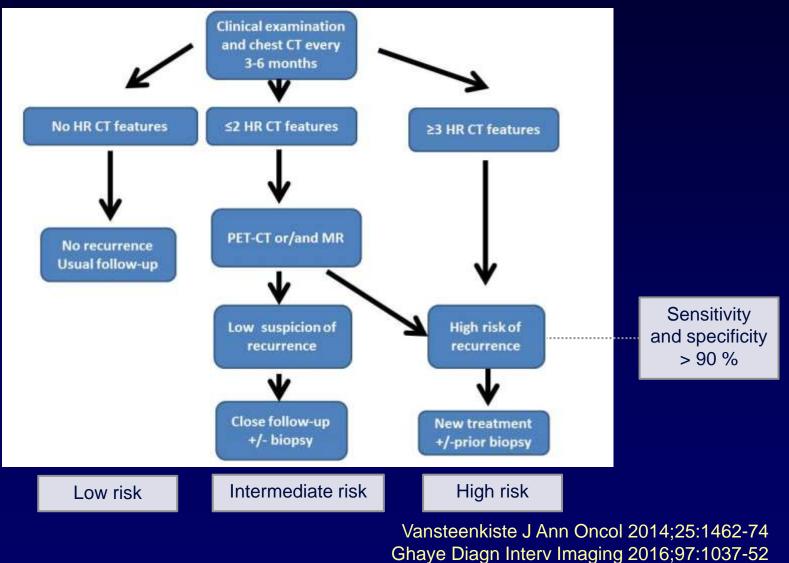
Pneumothorax Thickening Mesothelioma

Focal hepatitis Atrophic liver changes

Breast carcinoma Sarcoma/osteochondroma Oedema, calcifications, Skin thickening Osteoradionecrosis Fracture

Benveniste RadioGraphics 2019;39:344 Febbo RadioGraphics 2018;38;1312

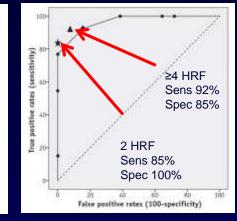
Follow-up after SABR High-risk features


RECIST: 71% FP and 28% PPV

- Enlarging opacity at the SRBT site
- Sequential enlarging opacity
- Loss of linear margin
- Convex bulging margin
- Disappearance of air-bronchogram
- Enlarging opacity without air bronchogram particularly >12 months
- > Cranio-caudal growth > 5 mm and $\ge 20\%$

Dunlap Int J Radiat Oncol Biol Phys 2012;84:1071

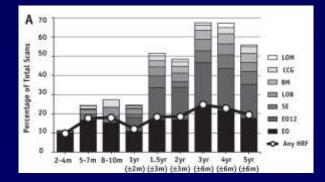
Huang Radiother Oncol 2012;102:335-42 Huang Radiother Oncol 2013;109:51-7 Febbo RadioGraphics 2018;38:1312-36


Follow-up after SABR High-risk features

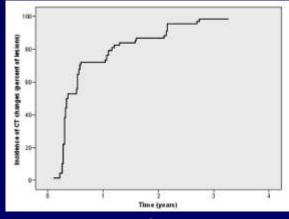
Febbo RadioGraphics 2018;38;1312-36

Follow-up after SABR High-risk features

High-risk CT feature for local recurrence	Sensitivity (%)	Specificity (%)	P value
Enlarging opacity ($\geq 5 \text{ mm and } \geq 20\%$)	100	31	.035
Sequential enlarging opacity	62	77	.033
Enlarging opacity after 12 months	92	50	.013
Bulging margin	85	100	<.001
Linear margin disappearance	85	100	<.001
Loss of air bronchogram	15	100	.105
Craniocaudal growth (\geq 5 mm and \geq 20%)	100	50	.001
Unilateral pleural effusion	31	96	.035
Relative growth	85	65	.001

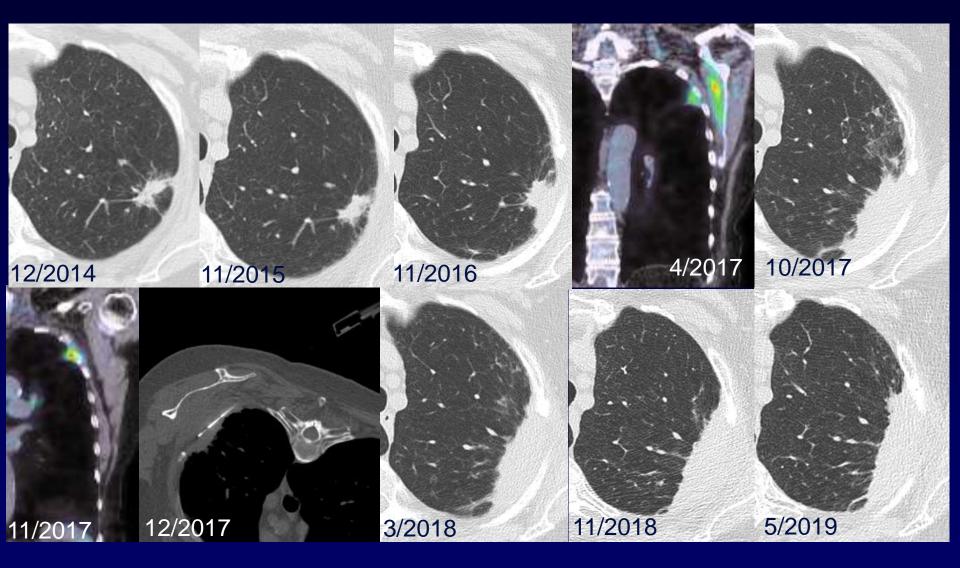


Abhreviations: CT = computed tomography; HRF = high-risk feature.


13 pts with local recurrence vs. 26 non recurrence

Peulen Int J Radiat Oncol Biol Phys 2016;96:134-41

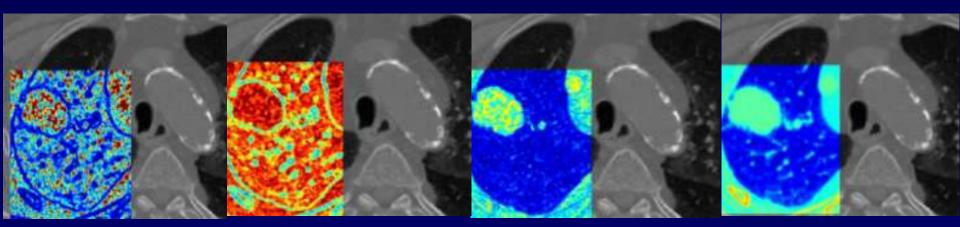
88 patients without local recurrence
50% have HRF
≥ 3 HRF in 25%
increased rate of FU CT, (PET and biopsy)
large interreader variability



Ronden Int J Radiat Oncol Biol Phys 2018;100:115-21

Dahele J Thorac Oncol 2011;6:1221-8

Follow-up after SABR



Follow-up after SABR Radiomics

Imaging features from pre-treatment or post-treatment CT are associated with clinical outcomes in NSCLC treated with SABR^{1,2}

Modèle à 5 paramètres									
Paramètre 1	Paramètre 2	Paramètre 3	Paramètre 4	Paramètre 5	Se (%)	Sp (%)	Précision		
Diff Entropy	Sum Average	SRE	GLN	16	100	94,3	0,94		
Entropy	Sum Average	SRE	GLN	16	100	94,3	0,94		
Homogeneity	Sum Average	SRE	GLN	16	100	94,3	0,94		
Inv Diff Mom	Sum Average	SRE	GLN	16	100	94,3	0,94		
Sum Average	Sum Entropy	SRE	GLN	16	100	94,3	0,94		
Sum Average	GLN	RP	Roundness	28	100	94,3	0,94		

Seuls les modèles avec une Précision supérieure à celle des modèles à 4 paramètres sont rapportés ici.

¹Li Med Phys 2017;44:4341-4349 ²Mattonen SA Int J Radiat Oncol Biol Phys 2016;94:1121-8 ³Seabra and Ghaye, ECR 2018

Conclusion

Any thoracic tissue exposed to radiations can show radiation injury

• RILD :

- Early and late features (reference point)
- Confinement to the fields of radiation
- Non-conformity to anatomic boundaries
- RT refinements : modified conventional, mass-like and scar-like patterns
- Knowledge of the treatment planning aids in the interpretation
- Long-term follow-up should be further refined (CT, PET-CT, MRI and PET-MRI)

Acknowledgements

- Members of Club Thorax, France
 - Mostafa El Hajjam, Paris
 - Jacques Giron, Toulouse
 - Gilbert Ferretti, Grenoble
 - Anne-Sophie Claes, Nîmes
- Radiology Dpt, UCL, Brussels
 - Jacques Malghem
 - Rita Seabra
 - Nicolas Michoux
- Radiation Therapy Dpt, UCL, Brussels
 - Marie Wanet
 - Xavier Geets